

General safety rules :
When working with products which are in contact to dangerous electrical voltages,
attention must be payed to the relevant valid VDE/IEC / EN regulations. Especialy With refrence to the following rules:
VDE 0100 , VDE 0550 / 0551 , VDE 0711, VDE 0860 , IEC 664 , IEC 742 , IEC 570 , IEC 65
In case of non-observance of this instructions the unit or other equipment might be
damaged and no warranty or liability could be accepted. .
When it is necessary to use tools on the device components parts or subassemblies make sure that the power is disconnected from the device and all capacities are
discharged.
fore ope
Sefore opening the equipment disconnect the power cord and make sure that the
contacts are not energized. It is only allowed to take components parts, subassemblies or device into operation if they are mounted in an insulated housing.
During the installation all devices have to
disconetecter for Power cords and leads which are connected to the device, components or Power cords and leads which hre connected to the device, components or
subassemblies have to be inspected for damaged insulation. If a failure is detected
the device or the the device or the subassembly has to be put out of service at once. It it not allowe to take the device or the subassembly into operation before replacing the damaged wer cord.
tis up to the user's responsibility that the specification limits of the device are not
If the user is not fully able to relate the technical guidelines, a technical adviser has
The orservance of construction requirements and safety rules (VDE, IEC, employers
liabiilty insurenance i.e.) is subject to the userlcustomer.

Consumers (e.g. contactors, motors, solenoid valv
etc.) which have not been correctly, interference-
(e.g. varistors, RC elements, etc.) may cause power
(e.g. varistors, RC elements, etc.).
supply regulation to malfunction.

A permanent overvoltage on the input unavoidably
causes a damage of the device.

Typ		SSE1205	SSE2405	
${ }_{\text {N }}$ Input voltage $\mathrm{U}_{\text {IN }}$		$11,5 \mathrm{~V}_{\mathrm{DC}} \ldots .18,0 \mathrm{~V}_{\mathrm{DC}}$	$23,5 \mathrm{~V}_{\mathrm{DC}} \ldots .31,0 \mathrm{~V}_{\text {D }}$	
Charging current		0,75A	0,4A	
Buffered voltage $\mathrm{U}_{\text {Buffer }}$		$11,0 \mathrm{~V}_{\text {DC }}$	$22,5 \mathrm{~V}_{\text {DC }}$	
Output current $\operatorname{lom}(\max)$		20A (Boost 30A)	10,0A (Boost 15,0A)	
Hold-up-time		typ. 2,0A 75s	typ. 1,0A 75s	
dimensions	BxHxT WxHxD	$64 \mathrm{~mm} \times 100 \mathrm{~mm} \times 120 \mathrm{~mm}$		
t weight		ca. $1,37 \mathrm{~kg}$	ca. $1,37 \mathrm{~kg}$	

LED-Display				
		at buffer module		at grid module
Line OK	\bigcirc off	DC Input failed	O green	DC Input OK
Charging	O off		O off O yellow	Capacitor full charged Charging
Buffering DC OK Cut of warning	$\begin{aligned} & \text { O red } \\ & \text { O green } \end{aligned}$	Charge of capacitor $<33 \%$ Charge of capacitor $>33 \%$, Ready for use	red green	Charge of capacitor $<33 \%$ Charge of capacitor >33\%, Ready for use

Relay-contacts
2 : DC-Input OK
As long as $U_{\text {IN }}$ is $>U_{\text {Nums }}$, the relay is closed
the case that $U_{\text {w }}$ failed, the relay drops out and the message "mains network failed" occurs.

Mounting alternatives

2.

3.

automatedcontrol

3/4 Birraba Ave, Beresfield NSW 2322 Ph 0249644022 | Fax 0240286770 www. automatedcontrol.com.au

Technical Data

Input data	
Input voltage $A C$	
Input voltage DC	see table
Charging current	see table
Output data	
Buffered voltage	see table
Current limiting	-
Residual ipple	< 50 mV
Control data	
Control deviation load	< 100 mV with load variation 10...90\%
Control deviation supply	-
Control time	< 10 msec. with load variation $10 . .90 \%$
Operating data	
Duty fircle	100\%
Operating temperature	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Hold-up-time	see diagram left
Storage temperature range	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Cooling	selfcooling
	recommended respecive distances 15 mm each
Safety devices	
Fuse recomended for input	not necessary
Output fuse	not neecssary - cont. short-circuit proof
Overload protection	integrated into device
MTBF	>380.000 h
Safety data	
Test voltage transormer	
High-voltage ersistance	-
Degree of EMI suppression	in accordance to VDE 0871 B and EN 55022/B
protection class	class II
Ambient humidity	95\% rel. humidity, yearly average dewing
	allowed for use in tropical ambient
Protective class enclosure	1P65
Protective class terminals	IP 20 (VGB4)
Vibration proof	>30g at 33 Hz in X, Y and Z ,
	acc. to IEC 68 and DIN 41640
Applied construction regulations	
according to VDE	VDE 0100, 0110, 0113, 0551, 0806
IEC	IEC 60950-1, IEC61000-6-1-2-3-4, IEC60068-2
EN	EN60950-1, EN61000-42, ENV61140
	EN61000-6-6-2-3-4.4.EN61000-4-5-6-6-1
CSA/UL	CSA-C 22.2 / UL508 / UL60950 /UL1950
Mechanics	
Mounting	on rails ac. to DIN 46277

Please observe

Connections for buffered load only.

Within an optimizing we improved technical features of the SSE1205 and SSE2405:

- Increase the capacity by 20\%
- Increase the over-load performance by $\mathbf{5 0 \%}$ up to $I_{\text {mAx }}=1,\left.5^{*}\right|_{\text {Nom }}$

Please take care of differents in wiring diagram "Connections for buffered load only" according enclosed instruction.

